
ChE 4063

December 6, 2001

I. 60 points

A certain liquid-phase polymerization reaction can be represented:

$$M \rightarrow (1/n) P_n$$

where n is the average number of monomer molecules in the polymer chain. The reaction is 3/2 order in monomer (M) concentration. The rate constant at 25° C (298 K) is $0.7 \text{ lt}^{1/2}$ mole^{-1/2}min⁻¹ and the activation energy is 25,000 cal/mole (note: the gas constant in calories is R=1.987 cal/mole-K). The initial concentration of M is 2.0 moles/lt, and the reaction may assumed to be constant density. An energy balance on an adiabatic flow reactor leads to:

$$T = T_0 + 3180 f_M / (600 - 35 f_M)$$

Where f_M is the fractional conversion of monomer.

In all cases, a 1000 lt/min feedstock enters a 2500 lt flow reactor.

- A. 10 points
 Find the conversion if an **isothermal PFR** at 30°C (303 K) is used.
- B. 25 points Find the conversion if an **adiabatic CSTR** with feedstock temperature $T_0 = 25$ °C (298 K) is used. Look for only one T_{out} , $f_{m,out}$ solution.
- C. 25 points Find the conversion if an **adiabatic PFR** with feedstock temperature $T_0 = 25$ °C (298 K) is used.
- II. 40 points

An isothermal 100 lt CSTR is fed with an aqueous solution containing reactant at $C_A = 3$ moles/lt and flowrate $\mathcal{V}_0 = 25$ lt/min. The following reactions take place:

$$\begin{array}{ll} A \rightarrow B & r_1 \text{ (moles/lt-min)} = 0.3 \text{ C}_A \\ A \rightarrow C & r_2 \text{ (moles/lt-min)} = 0.2 \text{ C}_A \\ B + C \rightarrow D & r_3 \text{ (moles/lt-min)} = 0.05 \text{ C}_B C_C \end{array}$$

where all concentrations are in moles/lt.

Find the product distribution $(C_A, C_B, C_C, \text{ and } C_D)$ leaving the reactor given $C_{B0} = C_{C0} = C_{D0} = 0$.