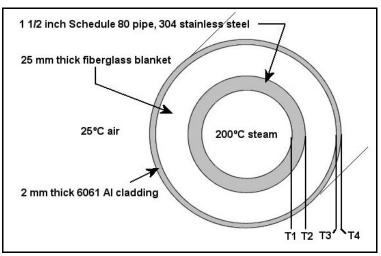
Open Books and Notes

I. 50 points


A 1 ½ inch Schedule 80 steel pipe (see Hagen, pg 671) is made of AISI 304 stainless steel. It has a 25 mm thick blanket of fiberglass insulation around it, and the whole assembly is clad with a 2 mm thick 6061 aluminum sheet metal. Condensing steam maintains the inside temperature of the pipe at T1 = 200 °C. Air at 25 °C surrounds the outside.

A. 20 points

Assuming the outside of the aluminum cladding is at T4 = 25 °C, calculate Q, the rate of heat loss, from a 1 meter length of pipe (with insulation and cladding).

B. 20 points

Calculate T2, the outside temperature of the Schedule 80 stainless steel pipe, for the case where $T1 = 200^{\circ}\text{C}$ and $T4 = 25^{\circ}\text{C}$.

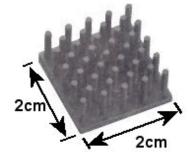
C. 10 points

Assuming the heat transfer coefficient on the outside is $10 \text{ W/(m}^2\text{-K)}$, calculate Q, the rate of heat loss, from a 1 meter length of pipe for T1 = 200° C and a surrounding air temperature of 25° C.

You may neglect contact resistances for all calculations.

II. 50 points

An integrated circuit 2cm x 2cm has a small copper heat sink of the same base dimension attached to it. The heat sink has 41 copper pin fins, each 1.5 mm in diameter and 5 mm long equally spaced around the heat sink similar to that given at the right. The


outside air temperature is 50°C, the base of the heat sink is maintained at 125°C, and the heat transfer coefficient is 18 W/(m²-K).

A. 25 points

What is the efficiency of any single pin?

B. 25 points

What is the total heat transfer from the device with 41 pins?

