Table C.4: Standard Enthalpies and Gibbs Energies of Formation at 298.15 K^{\dagger}

Joules per mole of the substance formed

		State	$\Delta H_{f_{298}}^{\circ}$	$\Delta G^{\circ}_{f_{298}}$
Chemical species		(Note 2)	(Note 1)	(Note 1)
Paraffins:				
Methane	CH ₄	(g)	-74,520	-50,460
Ethane	C_2H_6	(g)	-83,820	-31,85
Propane	C_3H_8	(g)	-104,680	24,29
n-Butane	C_4H_{10}	(g)	-125,790	-16,57
n-Pentane	C_5H_{12}	(g)	-146,760	-8,65
n-Hexane	$C_{6}H_{14}$	(g)	-166,920	15
n-Heptane	C_7H_{14}	(g)	-187,780	8,26
n-Octane	C_8H_{16}	(g)	-208,750	16,26
1-Alkenes:				
Ethylene	C_2H_4	(g)	52,510	68,46
Propylene	C_3H_6	(g)	19,710	62,20
1-Butene	C ₄ H ₈	(g)	540	70,34
1-Pentene	C_5H_{10}	(g)	-21,280	78,41
1-Hexene	C_6H_{12}	(g)	-41,950	86,83
1-Heptene	C_7H_{14}	(g)	-62,760	
Miscellaneous organics:	; ;			
Acetaldehyde	C_2H_4O	(g)	-166,190	-128,86
Acetic acid	$C_2H_4O_2$	(l)	-484,500	-389,90
Acetylene	C_2H_2	(g)	227,480	209,97
Benzene	C_6H_6	(g)	82,930	129,66
Benzene	C ₆ H ₆	(l)	49,080	124,52
1,3-Butadiene	C_4H_6	(g)	109,240	149,79
Cyclohexane	C_6H_{12}	(g)	-123,140	31,92
Cyclohexane	C_6H_{12}	(l)	-156,230	26,85
1,2-Ethanediol	$C_2H_6O_2$	(l)	-454,800	-323,08
Ethanol	C_2H_6O	(g)	-235,100	168,49
Ethanol	C ₂ H ₆ O	(l)	-277,690	-174,78
Ethylbenzene	C_8H_{10}	(g)	29,920	130,89
Ethylene oxide	C_2H_4O	(g)	-52,630	13,01
Formaldehyde	CH ₂ O	(g)	-108,570	102,53
Methanol	CH ₄ O	(g)	-200,660	-161,96
	CH₄Ô	(l)	-238,660	-166,27
Methanol	CIIAC			
		(g)	-154,770	27,48
Methanol Methylcyclohexane Methylcyclohexane	C ₇ H ₁₄	(g) (l)	-154,770 -190,160	
Methylcyclohexane Methylcyclohexane	C ₇ H ₁₄ C ₇ H ₁₄	<i>(l)</i>	•	20,56
Methylcyclohexane	C ₇ H ₁₄		-190,160	27,48 20,56 213,90 122,05

Table C.4 (Continued)

Table C.4 (Conunued)							
		State	$\Delta H_{f_{298}}^{\circ}$	$\Delta G_{f_{298}}^{\circ}$			
Chemical species		(Note 2)	(Note 1)	(Note 1)			
Miscellaneous inorganics:							
Ammonia	NH_3	(g)	-46,110	-16,450			
Ammonia	NH_3	(aq)		-26,500			
Calcium carbide	CaC ₂	(s)	-59,800	64,900			
Calcium carbonate	$CaCO_3$	(s)	-1,206,920	-1,128,790			
Calcium chloride	CaCl ₂	(s)	-795,800	-748,100			
Calcium chloride	CaCl ₂	(aq)		-8101900			
Calcium chloride	CaCl ₂ ⋅6H ₂ O	(s)	2,607,900				
Calcium hydroxide	Ca(OH) ₂	(s)	-986,090	-898,490			
Calcium hydroxide	$Ca(OH)_2$	(aq)		868,070			
Calcium oxide	CaO	(s)	-635,090	604,030			
Carbon dioxide	CO_2	(g)	-393,509	-394,35			
Carbon monoxide	CO	(g)	-110,525	-137,169			
Hydrochloric acid	HCl	(g)	-92,307	-95,29			
Hydrogen cyanide	HCN	(g)	135,100	124,70			
Hydrogen sulfide	H ₂ S	(g)	-20,630	-33,56			
Iron oxide	FeO	(s)	-272,000				
Iron oxide (hematite)	Fe ₂ O ₃	(s)	-824,200	-742,20			
Iron oxide (magnetite)	Fe ₃ O ₄	(s)	-1,118,400	-1,015,40			
Iron sulfide (pyrite)	FeS ₂	(s)	-178,200	-166,90			
Lithium chloride	LiCĨ	(s)	408,610				
Lithium chloride	LiCl·H ₂ O	(s)	-712,580				
Lithium chloride	LiCl·2Ĥ ₂ O	(s)	-1,012,650				
Lithium chloride	LiCl·3H ₂ O	(s)	-1,311,300				
Nitric acid	HNO ₃	(l)	-174,100	-80,71			
Nitric acid	HNO_3	(aq)		-111,25			
Nitrogen oxides	NO	(g)	90,250	86,55			
	NO_2	(g)	33,180	51,31			
	$N_2\tilde{O}$	(g)	82,050	104,20			
	N_2O_4	(g)	9,160	97,54			
Sodium carbonate	Na ₂ CO ₃	(s)	-1,130,680	-1,044,44			
Sodium carbonate	Na ₂ CO ₃ ·10H ₂ O	(s)	-4,081,320				
Sodium chloride	NaCl	(s)	-411,153	-384,13			
Sodium chloride	NaCl	(aq)		-393,13			
Sodium hydroxide	NaOH	(s)	-425,609	-379,49			
Sodium hydroxide	NaOH	(aq)		-419,15			
Sulfur dioxide	SO_2	(g)	-296,830	-300,19			
Sulfur trioxide	SO_3^2	(g)	-395,720	-371,06			
Sulfur trioxide	SO ₃	(l)	-441,040				
Sulfuric acid	H ₂ ŠO ₄	(l)	-813,989	-690,00			
Sulfuric acid	$H_2^2SO_4$	(aq)		-744,53			
Water	H ₂ O	(g)	-241,818	-228,57			
11 0002	**2			-237,12			

[†]From TRC Thermodynamic Tables—Hydrocarbons, Thermodynamics Research Center, Texas A & M Univ. System, College Station, TX; "The NBS Tables of Chemical Thermodynamic Properties," J. Phys. and Chem. Reference Data, vol. 11, supp. 2, 1982.

Notes 1. The standard property changes of formation $\Delta H_{f_{298}}^{\circ}$ and $\Delta G_{f_{298}}^{\circ}$ are the changes occurring when 1 mol of the listed compound is formed from its elements with each substance in its standard state at 298.15 K (25°C).

^{2.} Standard states: (a) Gases (g): pure ideal gas at 1 bar and 25°C. (b) Liquids (l) and solids (s): pure substance at 1 bar and 25°C. (c) Solutes in aqueous solution (aq): Hypothetical ideal 1-molal solution of solute in water at 1 bar and 25°C.