Table 2.3.1.1 (continued)

Kinetic Gr	oups	
Adsorption of A controlling	k_A	
Adsorption of B controlling	k_B	
Desorption of R controlling	$k_R K$	
Adsorption of A controlling with dissociation	k_A	
Impact of A controlling	$k_A K_B$	
Homogeneous reaction controlling	<i>k</i>	
Sı	urface Reaction Controlling	
	- D A 1 D A 1	

	$A \rightleftharpoons R$	$A \rightleftharpoons R \\ + S$	$\begin{array}{c} A + B \\ \rightleftharpoons R \end{array}$	$\begin{array}{c} A + B \\ \rightleftharpoons R + S \end{array}$		
Without dissociation	$k_{sr}K_A$	$k_{sr}K_A$	$k_{sr}K_AK_B$	$k_{sr}K_AK_B$		
With dissociation of A	$k_{sr}K_A$	$k_{sr}K_A$	$k_{sr}K_AK_B$	$k_{sr}K_AK_B$		
B not adsorbed	$k_{sr}K_A$	$k_{sr}K_A$	$k_{sr}K_A$	$k_{sr}K_A$		
B not adsorbed, A dissociated	$k_{sr}K_A$	$k_{sr}K_A$	$k_{sr}K_A$	$k_{sr}K_A$		

Exponents of Adsorption Groups

Adsorption of A controlling without dissociation	n = 1
Desorption of R controlling	n = 1
Adsorption of A controlling with dissociation	n = 2
Impact of A without dissociation $A + B \rightleftharpoons R$	n = 1
Impact of A without dissociation $A + B \rightleftharpoons R + S$	n = 2
Homogeneous reaction	n = 0

Surface Reaction Controlling

	$A \rightleftharpoons \mathbb{R}$	A ⇌ R + S	$A + B \Rightarrow R$	$\begin{array}{c} A + B \\ \rightleftharpoons R + S \end{array}$
No dissociation of A	1	2	2	2
Dissociation of A	2	2	3	3
Dissociation of <i>A</i> (<i>B</i> not adsorbed)	2	2	2	2
No dissociation of <i>A</i> (<i>B</i> not adsorbed)	1	2	1	2 .
No dissociation of A	. 1	2	1	2

⁴From Yang and Hougen (1950).

Table 2.3.1-1GROUPS IN KINETIC EQUATIONS FOR REACTIONS ON SOLID CATALYSTS^a

(2.3.1-21)

le 2.3.1contain mber of known acteristic Yang-

Ri – ecies in

rent in

t is freng step pove for corption catalytic ed as if

1971) of corming in Sec. sting of ion and rization se steps

Driving-Force Groups				
Reaction	$A \rightleftharpoons R$	$A \rightleftharpoons R \\ + S$	$\begin{array}{c} A + B \\ \rightleftharpoons R \end{array}$	$\begin{array}{c} A + B \\ \rightleftharpoons R + S \end{array}$
Adsorption of <i>A</i> controlling	$p_A - \frac{p_R}{K}$	$p_A - \frac{p_R p_S}{K}$	$p_A - \frac{p_R}{Kp_B}$	$p_A - \frac{p_R p_S}{K p_B}$
Adsorption of B controlling	0	0	$p_B - \frac{p_R}{Kp_A}$	$p_B - \frac{p_R p_S}{K p_A}$
Desorption of R controlling	$p_A - \frac{p_R}{K}$	$\frac{p_A}{p_S} - \frac{p_R}{K}$	$p_A p_B - \frac{p_R}{K}$	$\frac{p_A p_B}{p_S} - \frac{p_R}{K}$
Surface reaction controlling	$p_A - \frac{p_R}{K}$	$p_A - \frac{p_R p_S}{K}$	$p_A p_B - \frac{p_R}{K}$	$p_A p_B - \frac{p_R p_S}{K}$
Impact of A controlling (A not adsorbed)	0	0	$p_A p_B - \frac{p_R}{K}$	$p_A p_B - \frac{p_R p_S}{K}$
Homogeneous reaction controlling	$p_A - \frac{p_R}{K}$	$p_A - \frac{p_R p_S}{K}$	$p_A p_B - \frac{p_R}{K}$	$p_A p_B - \frac{p_R p_S}{K}$

Replacements in the General Adsorption Groups $(1 + K_A P_A + K_B p_B + K_R p_R + K_S p_S + K_I p_I)^n$				
Reaction	$A \rightleftharpoons R$	$A \rightleftharpoons R \\ + S$	$A + B \\ \rightleftharpoons R$	$A + B \\ \rightleftharpoons R + S$
Where adsorption of A is rate controlling, replace $K_A p_A$ by	$\frac{K_A p_R}{K}$	$\frac{K_A p_R p_S}{K}$	$\frac{K_A p_R}{K p_B}$	$\frac{K_A p_R p_S}{K p_B}$
Where adsorption of B is rate controlling, replace $K_B p_B$ by	0	0	$\frac{K_B p_R}{K p_A}$	$\frac{K_B p_R p_S}{K p_A}$
Where desorption of R is rate controlling, replace $K_R p_R$ by	KK_Rp_A	$KK_R \frac{p_A}{p_S}$	$KK_Rp_Ap_B$	$KK_R \frac{p_A p_B}{p_S}$
Where adsorption of A is rate controlling with dissociation of A , replace $K_A p_A$	$\sqrt{\frac{K_A p_R}{K}}$	$\sqrt{\frac{K_A p_R p_S}{K}}$	$\sqrt{\frac{K_A p_R}{K p_B}}$	$\sqrt{\frac{K_A p_R p_S}{K p_B}}$
Where equilibrium adsorption of A takes place with dissociation of A , replace K_Ap_A by (and similarly for other components adsorbed with dissociation)	$\sqrt{K_A p_A}$	$\sqrt{K_A p_A}$	$\sqrt{K_A p_A}$	$\sqrt{K_A p_A}$
Where A is not adsorbed, replace $K_A p_A$ by (and similarly for other components that are not adsorbed)	0	0	0	0