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The most commonly applied
model for correlating reaction rate
data is the power function rate
equation, which requires careful
data analysis for estimation of the
rmaction order. The authors pre-
‘sent a method for the analysis of

sothermal, constant volume data

~of irreversible reactions. The tech-
nique allows determination of
reaction order with simultaneous
| testing of goodness of fit and
proper transformation of error

distribution

Numcrcus methods of studying the kinetics of par-\\.
ticular reactions have been proposed. With the
exception of extremely rapid reactions, the measurement
of the concentration of an important réfactant as a func.
tion of some independent variables, such as time, is
frequently used as a method of conducting this study,
It is generally recognized that such a study of conversion
data alone cannot completely define the mechanism of a
reaction, and, in fact, such a complete definition is
seldom obtained. One main tool applied in the study of
a reaction mechanism, however, is the mathematical
model which best describes the reaction kinetics. Fur-
thermore, this model may be immediately useful in the
design of industrial equipment.

Several types of models have been used for correlating
reaction rate data. The most commonly applied model
is the power function rate equation, for which the reac-
tion order is selected by an analysis of experimental
data. Several techniques have been proposed for deter-
mining the reaction order in such a model. If no error
were present in the data, of course, all of these methods
would yield identical results and would be equally
reliable although not equally easy to use.  Since error is
present in the data, numerous discussions of the relative
merits of the several methods have arisen (7, 4, 5, 9, 70,
74~16). The general availability of small computers to
chemists and chemical engineers has allowed advances in
many computational areas unavailable at the time that
most of the techniques for determining reaction orders
were developed. Consequently, a method usable on
small computers and generally applicable to many prob-
Iems would be of value today.

The purpose of this paper is-to present such a method
for the analysis of isothermal, constant volume data of
irreversible reactions, This technique allows the deter-
mination of a reaction order in such a way that not only
is a goodness of fit of the predicted to the experimental
rates attained, but also the error distribution is properly
transformed. For example, a transformation may be
obtained such that less weight is automatically given to
low precision data. This is accomplished, of course, to
the extent that the goodness of fit and proper transforma-
tion of error can be simultaneously achieved, In addi-
tion, a general computer program is described which can
accomplish this estimation of the reaction order and the
forward rate constant.

CONVENTIONAL DETERMINATION
OF REACTION ORDER

The conventional methods of determining the reaction
order and estimating the rate ¢onstant can be broken
down into four primary areas. The influence of error in
the data on the reaction order estimated by each of these
methods is summarized here for the purpose of a later
comparison to the proposed technique of this paper.
More complete discussions of the mechanics of applying
these techniques are available in standard texts (7, 5, 9,
17}, Although the discussion will be centered upon iso-
thermal, constant volume, batch reactor data, the
method can be extended to certain other types of data.
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Mathod of Integration

In this mcethed, a reaction order is assumed and the
differential rate equation is then integrated to provide
an equation relating an instantaneous concentration to
the time over which the reaction has taken place. For
example, a second-order equation might be written:

dz
so that upon integration:
1 1
CAo(1 h x) CAo
Several techniques exist for testing this integrated equa-
tion and thus the assumed reaction order. 1In general
this integration method is not considered to be sensitive
for distinguishing between fractional orders (9).

To test graphically the adequacy of the integrated
equation, one can plot the concentration function, such
as 1/C {1 — x), os. tinie.  If the correct order has been
chosen, in this example second order, the data can be
well correlated by a straight line, the slope of which pro-
vides an estimate of the rate constant. The graphical
method becomes quite tedious, however, unless an ap-
propriate integral or half-integral order is found early in
the analysis.

One of the most commonly applied analytical meth-
ods is simply to calculate the rate constant {rom the
integrated equation—e.g., Equation 2—at each data
point, '

= k4 M

= kt (2)

1 1

L ©)
lCAo(i — x) tCAu
If trends in the constants are found with time or
initial concentration, a different reaction order is then
assumed. When an adequate order is found, the rate
constants, calculated at each point, are averaged to
obtain a “best’’ estimate of this constant. This method
suffers from the disadvantage of placing a very high
weight on the initial concentration of the reactant, because
it is used in the calculation of every rate constant.  Also,
at either high or low conversions, the calculated rate
constants can become greatly scattered due to the experi-
mental error influencing the term corresponding to
1/C,,(1 = x) in the second-order model of Equation 2.

Alternatively, one could calculate the rate constant
using adjacent pairs of data points. Livingston dis-
cusses further the disadvantages of these and other ana-
lytical methods (70). The general technique of using
trends of estimated constants to indicate the adequacy of
the model under consideration has been discussed else-
where (3).

A relatively recent technique has been to use nonlinear
least squares (73) to determine simultancously both the
reaction order and the rate constant. This eliminates
the trial-and-error procedure frequently necessary to
determine the reaction order. However, the usual
applications (73) of nonlinear estimation still assume that
the reaction rate is determined with equal precison at
each data point {constant error variance). This may
or may not be justified in a particular set of experiments.
Furthermore, one then encounters problems of initial
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. necessary fo"" the use of the method of integration. On’
© the other hand it can be seen that if one can obtain the

" tration with time in Equation 1-- the slope of a plot of the |

“culating the rate constant;

parameter estimates, convergence, and the necessity of
having available a relatively large and fast computer to
apply this estimation technigue.

Method of Differentiation N

It is obvious that many trial integrations may be

reaction ratg itself— that is, the rate of change of concen-”

logarithm of the rate v concentration will directly give:
the veaction order.  Of course, the determination of this
reaction rate requires differentiation of the concentra-
tion-time data. Several methods of accomplishing this
have been suggested (5). In addition to these, the con- |
centration-time data can be fit by an empirical function
which may then be differentiated analytically to obtain
reaction rates,

With the amount of error often present in kinetic data, -
however, it is sometimes difficult to get sufficiently pre. .
cise ratc measurements so that this method can he applied
satisfactorily.  Although techniques are available for .
adjusting these rates for greater consistency with the con-
centration-time data (7), the best application of this
procedure might be to obtain estimates of the reaction”
order for use in beginning the method of integration.

Method of Fractional Life Times

The most commonly used fractional life is the half- life,
the time required for one half of a given reactant to be
consumed. For this half-life, an integration of, for
example, Equation 1 yields

1
4
N O

tyg=

Then, the rate constant can be evaluated from IMeasures:
ments of the half-life for several initial concentrations
and any trends with initial concentration noted to deter.’
mine the adequaCy of the assumed reaction order.

Again, this technique can be quite tedious if the reace
tion order is not approximately known initially. Of
even more importance is the inability to check for a
variation of the rate constant with time in assessing the.
correctness of the reaction order. To circumvent this
difficulty partially, one can consider any point along the
concentration-time curve as the start of a new reaction’:
for which a fractional lifetime may be defined (7). How-
ever, few ratios of this sort can be obtained for a given®
reaction path.

Finally, not all of the data obtained are used in cal
for example, in Equation 4
only the initial and the half-way point are used. Thus,
this method can be tedious for deter mining the reaction
order, it requires considerable (unused) data, and should"
probably be followed by another method of estimating
the rate constant and assessing the adequacy of the
assumed reaction order whxch uses all of the data
Nevertheless, numerous useful applications of the method -
of fractional lifetimes exist,



Mathod of Reference Curves

Walas (77) discusses a method of assessing the reaction
order without estimating the rate constant, Here, the
ratio of the time required to reach any conversion divided
by the time required to reach, say, 90%, conversion is
plotted against conversion. The data can be shown to
be a function, then, only of the reaction order and can be
plotted on a graph containing a group of reference curves
for given orders. Thus, the experimental order can be
obtained by matching the data to one of the curves.
This is a useful technique, but it also places great weight
on the time required to reach a given conversion level,
such as the 90% level. In addition, the method is in-
sensitive to deviations of the data from the reference
curve unless a great number of reference curves are
drawn, Other methods of dimensionless curves also
exist (5).

TREATMENT OF SEVERAL REACTANTS

The previous discussion has tacitly assumed the exist-
ence of a single reactant. In fact, the method for esti-
mating reaction orders to be presented in the next section
also assumes a single reactant. Although this assump-
tion is certainly restrictive, methods exist for partially
circumventing this disadvantage.

One method of analyzing data for a rate equation of
the form

dc "
jand ”‘d: = kCA"CHm (D)

is to take reaction rate data at such large concentrations
of one reactant that this concentration is effectively a
constant during the entire course of the reaction. Then,
the vrder of the other reactant can be determined by
any of the previously discussed methods. This tech-
nique, called the isolation method, will allow a deter-
mination of the component reaction orders but it should
be kept in mind that a very limited region of the experi-
mental space has been covered in determining these
orders. Thus, because the model has not been tested for
conditions in which both concentrations are varying, the
model should be used with caution here. These esti-
mated constants, on the other hand, should provide
quite good initia} estimates for a nonlinear least squares
program which can analyze data taken when both con-
centrations are varying.,

A second method of analyzing data to be described by
Equation 5 is to use initial reaction rates. Here, one can
vary the initial concentrations of the individual reactants,
holding all other reactant concentrations constant, and
thus analyze the data by the previous methods. An
. advantage of this technique over the isolation method is
- that the concentrations of the reactants can be nearly
equal instead of some concentrations .being in large
excess.  The method allows reaction rates ta be obtained
over the entire range of composition with respect to
. known major reaction participants. I{gwcvcr, these
" rates may not be equal to those obtained from experi-
. ments in which extensive conversions are allowed because
of the presence of trace by-products generated during the
reaction which affect the reaction rate,

TRANSFORMATION TO OBTAIN
REACTION ORDER

It has been indicated that each type of data analysis
tacitly assumnes some form of dath weighting, Unfortu-
nately, this weighting is implicit in these analyses, and
the experimenter may not realize what assumptions are
being made. In addition, it would not be expected that
this assumed method of accounting for error in the data
would be identical with the demands of the actual error
distribution. In particular, with the usual unweighted
linear least squares analysis, one assumes that the effecs
tive error in the dependent variable, 1/C,(1 —~ %) of
Equation 2, is independently normally distributed with
constant variance. A transformation is now to be dis-
cussed which allows these assumptions to be met to the
extent that it is possible,

General Kinetic Formulation

The integrated form of an #™-order irreversible reac-
tion can be written

Cid [ =" —1]l= (=Dt nmi

—In{l —x) =k n = 1 ©)
Now, to write this in a more compact form, choose
A=np-—1
y=(1-x" ™

Thus, A is directly related to the reaction order and yis
the reciprocal of the fraction of the reactant unreacted at
time ¢ Let the following transformation also be de-
fined:

Y =1 A0
)‘O') = ACAO)‘ &)
lny A= 0

Then, the integrated n'-order rate expression of Equa-
tion 6 may be written in the gencralized form for all
reaction orders:

=k ®

It is now desired to estimate X in a manner which takes
into account the error distribution of the data.

Selection of a Transformation

Box and Cox (2) have recently presented a method of
choosing a transformation to achieve (a) linearity of the
model, (b) constancy of error variance, (c) normality of
error distribution, and (d) independence of the observa-~
tions, to the extent that all are simultaneously possible.
These are exactly the requirements for an unweighted
linear least squares analysis. Let us examine the appli-
cability of this transformation to the selection of a reaction
order.

One family of transformations discussed by Box and
Cox s

™ = A A0 (10)

lﬂy A =0
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Note the similarity of Equations 8 and 10. This will
allow a dcv'clogmc%:)alogous to that of Box and Cox,
except with the inchiton of the constant.

Parallel to the development of the transformation
of Box and Cox, let us assume that a A exists for which the
transformed dependent variable satisfies the four assump-
tions just tabulated. Then, the likelihood in relation to

the transformed dependent variable is:

N
i }:1 (},{(X)___ ke )2
R s B

Because this can also be considered to be a distribution
function of the transformed variable, onc can calculate
the distribution function of the untransformed variable
(original observations, y) through the Jacobian of the
transformation (&)

N
T 0% — ,
L ey T oy (2)
(g,r}ylz o~ 2 4 |
where
N
Jrzy) = 2 !

te} !

Now it is desired to select the reaction order and the
forward rate constant which have a maximum likelihood
(Equation 12) of representing the concentration-time
data. For a given X, an examination of Equation 12
indicates that it is maximized when the sum of squares of
the residuals for the transformed sariable is minimized—
ie, a standard unweighted least squares problem.
Then, if this is repeated for all possible values of A, 2 plot
can be made of these likelihoods 1o find that A which
provides an absolute maximum likelihood (a simplifica-
tion will be made shortly). Furthermore, if the
logarithm of the maximum likelihood for any given X is
defined as L,.,x(\) and the absolute maximum as Lu.<(}),
then an approximate 100{1 — «) confidence interval on
X is given by (2):

Lugx(R) = Luax(N) < 1/2X2* (o) (13)
or, at the 99% level,
Lmax(i) had Lmux()\) < 3.31

Box and Cox have further pointed out that these re-
sults may be expressed even more siruply if 2 normalized
transformation is chosen

N Jf()‘) ST (14)

The simplification obtained is evident upon taking the
logarithm of the likelihood function. Also, this allows
the determination of the reaction order without the
initial reactant concentration entering the calculation.
In ourcase

e
JUN o Sc,m)‘ A0 (15)
1/9 A=0
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where § is the geoméric mean of the experimental values
of the untransformed variable y.
Thus, the transformation that should be used for the
analysis of kinetic data is:
A Y

P = Pt A#0 (16)

4Iny A=0

Note that theinitial concentration is not contained in the
variable z™, -

The concentration-time data for several initial con-
centrations may be simultaneously analyzed by replacing
the initial concentration in Equation 15 by the geometric
mean of the initial concentrations. In such a case,
Equation 16 will no longer be independent of the initial
concentration but must be multiplied by the ratio of the
geometric mean of the inital concentrations to the initial
concentration associated with each y, raised to the A™®
pO‘W’CX’. c

Consequently, the steps that we should take for data of
a single initial concentration are:

1. Estimate, by unweighted lincar least squares, the
parameter b = L/JY¥ which minimizes the swn of
squares

SO = z< - b (17

for a given X and calculate the sum of squares S(A)

2. Plot this minimum sum of squares for several )

3. Read off the miniinum of this plot to obtain the
best A, X

4, Calculate the 999, confidence interval for this &
by

x? (0.01) 6.63
InSQ) — InSG) < ml"—'x;"-* 2 v (18)

If this procedure is followed, then a reaction order will
be obtained which is not masked by the effects of the
error distribution of the dependent variables. - Because the
transformation achieves the four qualities listed at the’
first of this section, an unweighted linear least squares
analysis may rigorously be used. The reaction order,

n = X - 1, and the transformed forward rate constant,”
b, possess all of the desirable properties of maximum -
likelihood estimates. Finally, the equivalent of the.
likelihood function can be represented by the plot of the
transformed sum of squares versus the reaction order,
This provides not only a reliable confidence interval on
the reaction order, but alsc the entire sum of squares -
curve as a function of the reaction order. - Then, for
example, one could readily determine whether any pre-
viously postulated reaction order can be reconciled with |
the available data. '

EXAMPLE 1

Pannetier and Davignon (77) studied the solid-solid
reaction:

NiSz () = NiS (s) + 1/2 8, (g) {19) -
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They presented seven determinations of the mass of un-
reacted solid at each of four temperatures for an
initial mass of 25 mg. of NiS, Data were also re-
ported for 100 and 200 mg. of NiS, initially present, but
these latter data will not be considered here. The 25-
mg. data, taken at equal increments of the mass of NiS3;
reacted, were analyzed by those authors through the
method of differentiation to obtain reaction orders of
0.67, 0.66, 0.71, and 0.67 with increasing temperatures,
Thus, they concluded that the reaction is of #/3 order:

L (MY
dt - (E)

We analyzed further the data for 25 mg. of NiS, initially
present.

Figures 1 through 4 present the sums of squares of the
transformed dependent variables 2™, and of the untrans-
formed dependent variables, x = (Mo — M)/Mo. An
examination of the 999 confidence interval (enclosed by
the wvertical broken lines on the graphs) for the trans-
formed variable indicates that the 2/; order reported by
Pannetier and Davignon is not compatible with the
415° C. data. Although this order is adequate for the
other data sets, a rather disturbing increase in the order
with an increase of the temperature is present.  In fact,
the 395° C. data alone would commonly be considered
to be 1/; order, with a relatively low probability of the
3/, order being appropriate. From an examination of
the two minima in each figure, one can further observe
the difference between the order predicted by this
method and that obtained by considering only the con-
version residuals—i.e., with no consideration of weight-
ing or normality of the error.

A typical analysis of variance for the transformed and
untransformed variables is shown in Table I It can be
seen from a comparison of the mean square due to the
model with the residual mean square that the model
accounts for much of the variation in the data. It was
known from the published work (77) for this particular
data set that a single reaction order could be found that
would approximately describe all of the data at cach
temperature Jevel. Thus, we considered only the lincar
maodel

(20)

y® = kt (21)

in the analysis of variance. If it had been necessary to
test for the adequacy of the model and thus for the prob-
ability of the data’s being from a complex reaction, for
which no simple reaction order is adequate, the gquad-
ratic term

W = b+ kat? @

could be included in the analysis of variance. The
quadratic term in Equation 22, of course, merely de~
scribes the deviation of the data from the best 2™ order
model and has no mechanistic interpretation. Thus,
the existence of an important quadratic term would only
indicate that no o order model could describe the data,

An examination of Table I indicates another advan-
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¢ that often can be derived from such a transforma-
non.  The ratio of the linear to the residual mean square
“is greater forthe transformed than for the untransformed
variables by a factor of 1.8. This indicates that the
wransformation has increased the sensitivity of the anal-
vsis (2),
This analysis leaves some doubt as to whether a single
reaction order exists which adequately can describe all of
“the data.  In support of this, the anomalous behavior of
the 415° C. data and the apparent increase of the reac-
~ tion order with temperature have been pointed out,  In
.- addition, if a single order must be selected, an examina-
- ton of the 959, confidence intervals (not shown) in-
- dicates that the */; order is a reasonable choice. For
-this order, however, estimates of the forward rate con-
" stants of (.100, 0.138, 0.250, and 0.538 hour™! are ob-
; tained and .these deviate somewhat from an Arrhenius
: relationship.  Finally, some trend of the residuals (3) of
_the transformed dependent variable with time exists for
this reaction order.

EXAMPLE 2

Pease {72), in discussing the experimental bas:s for the

. theary of quasi-unimolecular reactions, analyzed data for

- the gascous decomposition of nitrous oxide taken from

- literature. The data consisted of nine data points at

857.8° K., five at 875.0° K., and six at 887.7° K. for the
“reaction

2NO = 2N; -+ Oy (23)

The analysis (72) of other data led Hinshelwood to the
conclusion that the reaction is second order, while Volmer
reported it to be first order.  Pease analyzed data on this
reaction by the method of integration and found that the
reaction order could be either 1.0 or 1.5 since little varia-
tion could be seen in any of the calculated rate constants.
Upon presenting a possible mechanism yielding a 1.5-
order rate equation, he concluded that the data could
exhibit a 1.5 order:

{i,‘f’fi = e fp 1B ’
a kpa 29

Figures 5 through 7 present the sums of squares of the
transformed and untransformed dependent variables for
these data. It can be seen that an acceptable reaction
order for all these data is in the neighborhood of 1.3,
An order of 1.5 is not inconsistent with the low and high
temperature data but probably does not describe the
875° K. data. Note also that the reaction order is deter-
mined more precisely with the higher temperature data
in spite of the fewer data points there. It can also be
seen from these plots that a first-order reaction is not
consistent with the data. This more quantitative state-
ment about the relative acceptability of the 1.0 and 1.5
orders is possible because a quantitative measure of the
goodness of fit is available with this method whereas no
such measure is generally used in applications of the
method of integration,

The ratios of the mean square due to the transformed
model to the residual mean square for these three data
sets were of the order of magnitude of 108, indicating
that the model accounts for much of the variation in the
data. Again, a quadratic term could be used for a
more careful analysis of variance if it were not known
from previous evidence (72) that a reaction order could
be found which fits the data adequately.

On the basis of these graphs, it scemed reasonable to
assign a 4/, order to the reaction. The rate constants
for this reaction order, then, are 2.42 X 103, 488 X
1073, and 7.77 X 10~% (cc./gram mole)'® sec, ™. These
rate constants follow an Arrhenius relation quite well,

EXAMPLE 3

Hinshelwood and Burk (6) studied the reaction of
gaseous ammonia adsorbed on a tungsten wire at several
temperatures and at various pressures of ammonia and
amunonia-hydrogen mixtures:

TABLE I. ANALYSIS OFsglsi‘\)lzlANCE OF NiS; DATA AT

Mean Sguares
Degrees ; !
of Free« © Untransformed, Transfarmed,
dom n = 0.05 A= 045
Due to model 1 2.212 502.5
Residual 0.000142 0.0179

LY. N1 R T N N R ) -



10 14
o9t~ ~h12
oat- ~{1.0

”

E3 |

1 *

g n " "t

& W or =g
»
i
o} dos R
§ g
g
-~
g 0.5} -M§
: 04} 1oz =
X 2
£ 3
g o3} s LI
=
3 3
val
ot} i !
§
7
!
o | O S S d
ol o2 03 04 05 04 07

REACTIOR ORRER, w

Figure 8. Sum of squares curve for 100 mm. Hg NFH; decomposition

\

They found that the reaction was “almost zero order,”
Laidler (9) in discussing this reaction pointed out that

plots of pressure of decomposed gas vs. time which “ap-

proach linearity more closely than they approach the type
of curvature found with first-order reactions” supported
zero-order kinetics. Furthermore, Laidler stated that
half-lives indicate that zero-order kinetics are preferable
‘to first-order kinetics.

The nine data at 100 and the twelve data at 200 mum.
Hg of ammonia pressure and 856° K. were analyzed by
us, The usual plots of the sums of squares of residuals
for the transformed and untransformed dependent
variables are shown in Figures 8 and 9. It can be seen
from these plots that reaction orders from 0.35 to 0.40 are
compatible with all of the data. Furthermore, it can be
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seen from the confidence intervals using all of these data
that the reaction is probably neither zero nor first order,
Such a deviation from zero order could be of consider-
able significance in a study of the reaction mechanism.
Laidler (9) has, in fact, suggested a reason for the devia-
tion of the data from zero order at high reaction times
It should be noted that the same order is predicted by
the minimum sum of squares of residuals of both the
transformed and the untransformed variables, indicating -
that no adjustiment of the reaction order was needed to
take into account the nature of the error distribution, |
The ratios of the mean square due to the model to the
residual mean square for the data of both ammonia pres
sures were of the order of magnitude of 10°, For a 0.4
erder reaction, the best estimates of the rate constant are
4.3 X 10" and 3.8 X 107 (gram mole/cc. )™ sec. for.
initial pressures of 100 and 200 mm. Hg, respectively,
This agreement is reasonably good.
This example clearly illustrates one of the imphicit
disadvantages of the conventional methods of determin-
ing the reaction order—the tendency to stop the analysis
at the best integral or half-integral order and not to
examine those reaction orders that are approximately ~
equally capable of describing the reaction. "This is -
partly because no quantitative way is generally used to -
compare the goodness of fit of several orders with the -
conventional methods, For data presenting a sums-of-
squares curve, such as Figure 8, and without any inde-



pendent evidence to the contrary, it is evident that an
interpretation of a mechanism based upon a zero-order
reaction could not only be of little value, but it could
actually be misleading.

Discussion

] The several conventional methods of determining reac-
. tion orders have two common disadvantages, the impor-
4 tance of which depends upon the amount and distribu-
tion of the error in the data,  First, nearly all methods
place a very large weight on the concentration at a par-
ticular point in the course of the reaction, such as the
initial concentration. Second, proper consideration is
rarely given 0 the distribution of error in the data,
which should be used to give some data less weight than
§ otherdata, The methods are generally tedious, and the
determination of the adequacy of a particular order is
only qualitative. Also, in using least squares techniques,
normality and independence of the error is desirable.
- The method presented here, a variation of the method
§ of integration, transforms the dependent variable to
1 achieve an error distribution as consistent as possible
8 with the assumptions inherent in a least squares analysis.
i é Hence, if these assumptions are fulfilled, the maximum
. likelihood estimates of the reaction order and the trans-
forraed rate constant are obtained. Furthermore, as a
result of the normalization of the dependent variable by
dividing by the Jacobian of the transformation, the
§ -~ reaction order is obtained without repeated reference to
4  ac initial concentration. The initial concentration is
used only in the evaluation of the rate constant after the
reaction order has been selected. Thus, this proposed
method takes into aceount the error in the data in a
&4 more satisfactory fashion than any of the conventional
methods of determining reaction orders.  In addition, a
dependable confidence interval can be obtained to deter-
mine the range of possible orders which is compatible
with the data. The plot of the sums of squares of re-
siduals vs. the reaction order, as demonstrated in Example
3, can be very valuable in studying a particolar reaction.
A small computer, such as the IBM 1620, is of con-
siderable assistance in the performance of the routine
caleulations in this method. A perfectly general com-
~ puter program can be written for this computer which
can take the time and concentration data directly from
the experimenter and calculate the sums of squares in the
ransformed  variable over suitable reaction orders,
These sums of squares can be searched to find a mini-
mum and the analysis of variance for Equation 22

. computer time (gencrally less than 20 minutes). These
sums of squares can then be printed as compv:xtcr cutput.
Alternatively, one can utilize an automatic ”p'lotting de-
vice to allow a direct presentation of graphs similar to
“those in this paper. The axes on such graphs would be

:fined for each problem with the aid of the confidence
interval on the reaction order.  With such a tool at their
disposal, chemists or chemical engineers can assign reac-
tion orders quickly and rationally.

-completed at this minimum with little exﬁf&nditurc of

NOMENCLATURE

4 = transformed forward rate constant defined above
Equation 17

Ca concentration of component A, %ram moles/ce.

Cao = initial concentration of component A, gram moles/cc.

Ca = concentration of component B

J{X; ¥y} = Jacobian of the transformation of the untransformed
variable, y, to the transformed variable, y(N

£ = forward rate constant

ks = empirical constant in Equation 22

Loax™ = maximized logarithm of the likelihood function in
relation to the original observations, y {Equation 12),
for any given A

Luax™ = absolute maximized logarithm of the Likelihood func-
tion in relation to the original observations for all A

M = mass of NiS; not decomposed at time ¢

Mq == initial mass of NiS»

i

m = reaction order for component #
N = number of observations
n = reaction order for component 4

= partial pressure of component 4

4
§® = minimum sum of squares of residuals for transformed
variable for a given A

S® = absolute minimum sum of squares of residuals for
transformed variable for all )

8 = solid

t = time during which a reaction has taken place

42 = time required for one half of initial amount of a given
reactant to be consumed

x = fraction of a reactant converted at time ¢

%1 = caleulated value of the fraction of a reactant converted
at time ¢

z = reciprocal of fraction of reactant which is unreacted
at time ¢

y = vector of all experimental values of the untransformed
variable y

¥ = geometric mean of all experimental values of untranse

formed variable y

¥® = generalized transformed dependent variable given by
Equation 8

™ = normalized transformed dependent variable given by
Equations 8 and 16

za® = predicted value of the normalized teansformed de-
pendent variable (Y

Greek Letters

@ = confidence cocfficient for Chi-Squared distribution

A = parameter related to reaction arder by Equation 7

A = best estimate of parameter N minimizing the sum of
squares of Equation 17

o = constant standard deviation of experimental error in
transformed dependent variable y(3)

X ¥ a) = abscissa value below which is 100(1 — «) per cent of

the arca under the curve of a Chi-Squared distribu-
tion with one degree of freedom
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