The reversible reaction $A \rightarrow R$ has the following coefficient parameters:

$$\begin{array}{ll} A_1 = 7 \ s^{\text{-1}} & E_1 = 41,868 \ kJ/kmol \\ A_2 = 5000 \ s^{\text{-1}} & E_2 = 83,736 \ kJ/kmol \end{array}$$

The reaction is to be carried out in a batch reactor with a maximum allowed temperature of T_{max} = 800K. For a conversion of x_{af} = 0.8:

- (a) Determine the optimum isothermal operating temperature, and the resulting batch holding time. Also determine the heat exchange rate required.
- (b) Determine optimum temperature profile as a function of conversion and a function of processing time.
- (c) Determine the heat exchange rates required for part (b).

Additional data:

Density of liquid = 1000 kg/m^3

Heat capacity = 4.187 kJ/kg C.

Initial mole fraction of reactant A = 0.5

Molecular weights: = 100 for A

= 20 for solvent