November 20, 2019

EXAM III Open Books and Notes

Name:

A vapor compression refrigeration cycle is used with R-134a working fluid. Use the R-134a table in the appendix of your book for all calculations. Use reasonable assumptions for a typical vapor compression cycle to complete the calculations. However, in this case, there will be a pressure drop in the condenser (usually we assume the condenser is constant P) so that $P_4 = 1400 \text{kPa}$. The thermal efficiency, η , of the

compressor is 75% and the heat load on the evaporator (\mathbf{Q}_{evap}) is one ton of refrigeration (1 ton = 3.5 kW).

A. 51 points

Fill in the missing numbers in the following table using the numbering sequence given in the figure (each

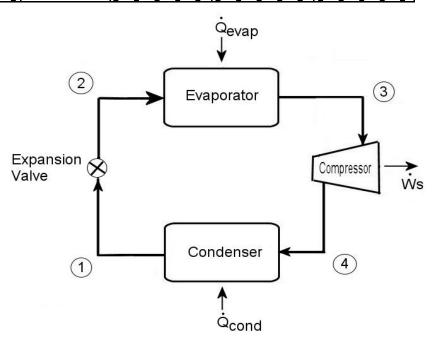
empty box is worth 3 points):

ipty box is worth 3 points):						
	Point 1	Point 2	Point 3	Point 4' (base case)	Point 4	
T (°C)	48	-10				
P (kPa)				1400	1400	
H (kJ/kg)						
S (kJ/kg-°K)						
x (vapor fraction)	XXXX			XXXX	XXXX	

B.	17 points
В.	1 / points

Find the flowrate, \mathbf{m} of the R-134a

$$\mathbf{m} = \underline{\qquad} kg/s$$


C. 16 points
Find the work requirement for the compressor in kW.

$$\dot{\mathbf{W}}_{\mathbf{S}} = \mathbf{k}\mathbf{W}$$

D. 16 points

Find $\dot{\mathbf{Q}}_{\mathbf{cond}}$ in kW.

$$\mathbf{Q}_{\mathbf{cond}} = \underline{\hspace{1cm}} \mathbf{kW}$$

