
Steam flowing at 1.0 kg/s enters an adiabatic compressor at 150°C and 100kPa (point 1). It is compressed adiabatically to 1000kPa (point 2), requiring 675 kW of power to drive the compressor. The steam then flows to a heat exchanger where it is used to heat a stream of air from 25°C, 1000kPa (point 4) to 186.85°C (460K), 800kPa (point 5). The steam leaves the exchanger at 200 °C and 800kPa (point 3). A schematic of the process is given below:

I. 70 points

Fill in the following table:

	Point 1	Point 2' (isentropic base case)	Point 2 (actual case)	Point 3	Point 4	Point 5
P (kPa)	100	1000	1000	800	1000	800
T (°C)	150			200	25	186.85
h (kJ/kg)						
s (kJ/kg-K)						

II. 15 points

Find the thermal efficiency, η , of the compressor.

η	=			

III. 15 points

Find the flowrate of air assuming there is no heat loss from the heat exchanger.

$$m_{air} = kg/s$$

Instructions:

- 1. Use the steam table, Table B.1, beginning on page 510 of your textbook for steam properties.
- 2. Use the ideal-gas properties of air given in Table A7.1 on page 496 of your text for air properties.
- 3. Turn in your calculations with this sheet filled in. Failure to turn in your calculations will result in no credit for the problem.