ES 3053 EXAM I September 30, 2019 Open Books and Notes

A frictionless piston and cylinder arrangement initially contains V_1 =2500 cm³ of pure, *saturated liquid* R-134a at P_1 =400 kPa. Use the R-134a tables in the back of your book for part I below.

- I. 20 points total
 - A. 5 points

How many kg (kilograms) of R-134a does the piston and cylinder arrangement contain?

B. 5 points

What is the temperature in °C?

B. 10 points

What are the total enthalpy (H_1) and internal energy (U_1) of the R-134a in kJ?

The piston and cylinder arrangement is then heated reversibly on a hot plate holding the temperature constant, until only saturated *vapor* exists. Use the R-134a tables for part II below.

- II. 55 points total
 - A. 10 points

What is the total volume (V_2) of the R-134a in cm³?

B. 10 points

What are the total enthalpy (H_2) and internal energy (U_2) of the R-134a in kJ?

C. 30 points

For the process $I \rightarrow II$, what are ΔU , ΔH , Q, and W (all in kJ)?

D. 5 points

Why doesn't $\Delta H = \int C_n dT$ and $\Delta U = \int C_v dT$ for the process $I \rightarrow II$?

The piston is then locked in place so that the volume is constant at $V=V_2$. The piston and cylinder arrangement is then returned to the hot plate and heating is continued until $T_2 = 80$ °C.

- III. 25 points total
 - A. 10 points

Estimate the pressure using the ideal gas law for P-V-T behavior of the R-134a vapor.

B. 15 points

Find the pressure using the R-134a table.

 $R = 83.14 \text{ (cm}^3 - \text{bar)/(gmole - K)} = 0.008314 \text{ (m}^3 - \text{kPa)/(gmole - K)} = 0.08314 \text{ (L - bar)/(gmole - K)}$ MW of R-134a is 102.03 g/gmole

Or you can use the value on a per kg basis in your book on pg 883.

Given as an Example Exam

Your Name:	
------------	--

Show your work. Your exam paper *must* include this work to get credit for any part. Transfer the following answers from your pages of calculations and turn in with your calculations:

I.	20	points	total

B. 5 points
$$T_1 = {}^{\circ}C$$

B. 10 points:
$$H_1 = \underline{\hspace{1cm}} kJ$$

$$U_1 = \underline{\qquad \qquad } kJ$$

II. 55 points total

A. 10 points:
$$V_2 = \underline{\qquad} m^3$$

B. 10 points:
$$H_2 = \underline{\hspace{1cm}} kJ$$

$$U_2 = \underline{\qquad kJ}$$

C. 30 points:
$$\Delta U = kJ$$

$$\Delta H = kJ$$

$$Q = \underline{\qquad} kJ$$

$$W = \underline{\qquad} kJ$$

D. 5 points: Why doesn't
$$\Delta H = \int C_p dT$$
 and $\Delta U = \int C_v dT$ for the process $I \rightarrow II$?

Answer:

III. 25 points total

A. 10 points:
$$P = \underline{\qquad} kPa$$
 (idea gas law)