Appendix G

UNIFAC Method

The UNIQUAC equation¹ treats $g \equiv G^E/RT$ as the sum of two parts, a *combinatorial* term g^C to account for molecular size and shape differences, and a *residual* term g^R (not a residual property as defined in Sec. 6.2) to account for molecular interactions:

$$g \equiv g^C + g^R \tag{G.1}$$

Function g^C contains pure-species parameters only, whereas function g^R incorporates two binary parameters for each pair of molecules. For a multicomponent system,

$$g^{C} = \sum_{i} x_{i} \ln \frac{\Phi_{i}}{x_{i}} + 5 \sum_{i} q_{i} x_{i} \ln \frac{\theta_{i}}{\Phi_{i}}$$
 (G.2)

$$g^{R} = -\sum_{i} q_{i} x_{i} \ln \left(\sum_{j} \theta_{j} \tau_{ji} \right)$$
 (G.3)

where

$$\Phi_i \equiv \frac{x_i r_i}{\sum_i x_j r_j} \tag{G.4}$$

$$\theta_i \equiv \frac{x_i q_i}{\sum_j x_j q_j} \tag{G.5}$$

Subscript i identifies species, and j is a dummy index; all summations are over all species. Note that $\tau_{ji} \neq \tau_{ij}$; however, when i = j, then $\tau_{ii} = \tau_{jj} = 1$. In these equations r_i (a relative molecular volume) and q_i (a relative molecular surface area) are pure-species parameters. The influence of temperature on g enters through the interaction parameters τ_{ji} of Eq. (G.3), which are temperature dependent:

$$\tau_{ji} = \exp\frac{-\left(u_{ji} - u_{ii}\right)}{RT} \tag{G.6}$$

Parameters for the UNIQUAC equation are therefore values of $(u_{ji} - u_{ii})$.

¹D. S. Abrams and J. M. Prausnitz, AIChE J., vol. 21, pp. 116-128, 1975.

An expression for $\ln \gamma_i$ is found by application of Eq. (13.7) to the UNIOUAC equation for g [Eqs.(G.1) through (G.3)]. The result is given by the following equations:

$$\ln \gamma_i = \ln \gamma_i^C + \ln \gamma_i^R \tag{G.7}$$

$$\ln \gamma_i^C = 1 - J_i + \ln J_i - 5q_i \left(1 - \frac{J_i}{L_i} + \ln \frac{J_i}{L_i} \right)$$
 (G.8)

$$\ln \gamma_i^R = q_i \left(1 - \ln s_i - \sum_j \theta_j \frac{\tau_{ij}}{s_j} \right)$$
 (G.9)

where in addition to Eqs. (G.5) and (G.6),

$$J_{i} = \frac{r_{i}}{\sum_{j} r_{j} x_{j}}$$

$$L_{i} = \frac{q_{i}}{\sum_{j} q_{j} x_{j}}$$
(G.10)

$$L_i = \frac{q_i}{\sum_j q_j x_j} \tag{G.11}$$

$$S_i = \tau_{li} \sum_{l} \theta_l \tag{G.12}$$

Again subscript i identifies species, and j and l are dummy indices. All summations are over all species, and $\tau_{ij} = 1$ for i = j. Values for the parameters $(u_{ii} - u_{ji})$ are found by regression of binary VLE data and are given by Gmehling et al.²

The UNIFAC method for estimation of activity coefficients³ depends on the concept that a liquid mixture may be considered a solution of the structural units from which the molecules are formed rather than a solution of the molecules themselves. These structural units are called subgroups, and a few of them are listed in the second column of Table G.1. A number, designated k, identifies each subgroup. The relative volume R_k and relative surface area Q_k are properties of the subgroups, and values are listed in columns 4 and 5 of Table G.1. Also shown (columns 6 and 7) are examples of molecular species and their constituent subgroups. When a molecule can be constructed from more than one set of subgroups, the set containing the least number of different subgroups is the correct set. The great advantage of the UNIFAC method is that a relatively small number of subgroups combine to form a very large number of molecules.

Activity coefficients depend not only on the subgroup properties R_k and Q_k , but also on interactions between subgroups. Here, similar subgroups are assigned to a main group, as shown in the first two columns of Table G.1. The designations of main groups, such as "CH2," "ACH," etc., are descriptive only. All subgroups belonging to the same main group are

²J. Gmehling, U. Onken, and W. Arlt, Vapor-Liquid Equilibrium Data Collection, Chemistry Data Series, vol. I, parts 1-8 and supplements, DECHEMA, Frankfurt/Main, 1974-1999.

³Aa. Fredenslund, R. L. Jones, and J. M. Prausnitz, AIChE J., vol. 21, pp. 1086–1099, 1975.

1CH₃, 1CH₃NH

1CH₃, 1CH₂CN

1CH₃CN

2CH₃, 1CH₂, 1CH₂NH

4CH₃, 1CH, 1CHNH

15 "CNH"

19 "CCN"

CH₃NH

CH₂NH

CHNH

CH₃CN

CH₂CN

32

33

34

41

42

1.4337

1.2070

0.9795

1.8701

1.6434

Main group	Subgroup	k	R_k	Q_k	Examples of molec constituent groups	ules and their
1 "CH ₂ "	$ m CH_3$ $ m CH_2$ $ m CH$ $ m C$	1 2 3 4	0.9011 0.6744 0.4469 0.2195	0.848 0.540 0.228 0.000	n-Butane: Isobutane: 2,2-Dimethyl propane:	2CH ₃ , 2CH ₂ 3CH ₃ , 1CH 4CH ₃ , 1C
3 "ACH" (AC = ar	ACH omatic carb	10 oon)	0.5313	0.400	Benzene:	6ACH
4 "ACCH ₂ "	ACCH₃ ACCH₂	12 13	1.2663 1.0396	0.968 0.660	Toluene: Ethylbenzene:	5ACH, 1ACCH ₃ 1CH ₃ , 5ACH, 1ACCH ₂
5 "OH"	ОН	15	1.0000	1.200	Ethanol:	1CH ₃ , 1CH ₂ , 1OH
7 "H ₂ O"	H ₂ O	17	0.9200	1.400	Water:	1H ₂ O
9 "CH ₂ CO"	CH₃CO CH₂CO	19 20	1.6724 1.4457	1.488 1.180	Acetone: 3-Pentanone:	1CH ₃ CO, 1CH ₃ 2CH ₃ , 1CH ₂ CO, 1CH ₂
13 "CH ₂ O"	CH ₃ O CH ₂ O CH-O	25 26 27	1.1450 0.9183 0.6908	1.088 0.780 0.468	Dimethyl ether: Diethyl ether: Diisopropyl ether:	1CH ₃ , 1CH ₃ O 2CH ₃ , 1CH ₂ , 1CH ₂ O 4CH ₃ , 1CH, 1CH–O

Table G.1: UNIFAC-VLE Subgroup Parameters†

1.244

0.936

0.624

1.724

1.416

Dimethylamine:

Diisopropylamine:

Diethylamine:

Acetonitrile:

Propionitrile:

considered identical with respect to group interactions. Therefore parameters characterizing group interactions are identified with pairs of *main* groups. Parameter values a_{mk} for a few such pairs are given in Table G.2.

The UNIFAC method is based on the UNIQUAC equation, for which the activity coefficients are given by Eq. (G.7). When applied to a solution of groups, Eqs. (G.8) and (G.9) are written:

$$\ln \gamma_i^C = 1 - J_i + \ln J_i - 5q_i \left(1 - \frac{J_i}{L_i} + \ln \frac{J_i}{L_i} \right)$$
 (G.13)

$$\ln \gamma_i^R = q_i \left[1 - \sum_k \left(\theta_k \frac{\beta_{ik}}{s_k} - e_{ki} \ln \frac{\beta_{ik}}{s_k} \right) \right]$$
 (G.14)

[†]H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, *IEC Research*, vol. 30, pp. 2352–2355, 1991.

Table G.2: UNIFAC-VLE Interaction Parameters, a_{mk} , in kelvins[†]

		. 1	3	4	5	7	9	13	15	19
1	CH2	0.00	61.13	76.50	986.50	1318.00	476.40	251.50	255.70	597.00
3	ACH	-11.12	0.00	167.00	636.10	903.80	25.77	32.14	122.80	212.50
4	ACCH2	-69.70	-146.80	0.00	803.20	5695.00	-52.10	213.10	-49.29	6096.00
5	OH	156.40	89.60	25.82	0.00	353.50	84.00	28.06	42.70	6.712
7	H2O	300.00	362.30	377.60	-229.10	0.00	-195.40	540.50	168.00	112.60
9	CH2CO	26.76	140.10	365.80	164.50	472.50	0.00	-103.60	-174.20	481.70
13	CH2O	83.36	52.13	65.69	237.70	-314.70	191.10	0.00	251.50	-18.51
15	CNH	65.33	-22.31	223.00	-150.00	-448.20	394.60	-56.08	0.00	147.10
19	CCN	24.82	-22.97	-138.40	185.40	242.80	-287.50	38.81	-108.50	0.00

[†]H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30, pp. 2352–2355, 1991.

The quantities J and L are still given by Eqs. (G.10) and (G.11). In addition, the following definitions apply:

$$r_i = \sum_k v_k^{(i)} R_k \tag{G.15}$$

$$q_i = \sum_k v_k^{(i)} Q_k \tag{G.16}$$

$$e_{ki} = \frac{v_k^{(i)} Q_k}{q_i} \tag{G.17}$$

$$\beta_{ik} = \sum_{m} e_{mi} \tau_{mk} \tag{G.18}$$

$$\theta_k = \frac{\sum_i x_i q_i e_{ki}}{\sum_j x_j q_j} \tag{G.19}$$

$$s_k = \sum_m \theta_m \tau_{mk} \tag{G.20}$$

$$\tau_{mk} = \exp \frac{-a_{mk}}{T} \tag{G.21}$$

Subscript i identifies a species, and j is a dummy index running over all species. Subscript k identifies subgroups, and m is a dummy index running over all subgroups. The quantity $v_k^{(i)}$ is the number of subgroups of type k in a molecule of species i. Values of the subgroup parameters R_k and Q_k and of the group interaction parameters a_{mk} come from tabulations in the literature. Tables G.1 and G.2 show a few parameter values; the number designations of the complete tables are retained.⁴

The equations for the UNIFAC method are presented here in a form convenient for computer programming. In the following example we run through a set of hand calculations to demonstrate their application.

Example G.1

For the binary system diethylamine(1)/n-heptane(2) at 308.15 K, find γ_1 and γ_2 when $x_1 = 0.4$ and $x_2 = 0.6$.

Solution G.1

The subgroups involved are indicated by the chemical formulas:

$$CH_3 - CH_2NH - CH_2 - CH_3(1) / CH_3 - (CH_2)_5 - CH_3(2)$$

⁴H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30, pp. 2352-2355, 1991.

The following table shows the subgroups, their identification numbers k, values of parameters R_k and Q_k (from Table G.1), and the numbers of each subgroup in each molecule:

	k	R_k	Q_k	$v_k^{(1)}$	$v_k^{(2)}$
CH ₃	1	0.9011	0.848	2	2
CH_2	2	0.6744	0.540	1	5
CH ₂ NH	33	1.2070	0.936	1	0

By Eq. (G.15)

$$r_1 = (2)(0.9011) + (1)(0.6744) + (1)(1.2070) = 3.6836$$

Similarly,

$$r_2 = (2)(0.9011) + (5)(0.6744) = 5.1742$$

In like manner, by Eq. (G.16),

$$q_1 = 3.1720$$
 and $q_2 = 4.3960$

The r_i and q_i values are molecular properties, independent of composition. Substituting known values into Eq. (G.17) generates the following table for e_{ki} :

	e_{ki}				
k	i = 1	i = 2			
1	0.5347	0.3858			
2	0.1702	0.6142			
33	0.2951	0.0000			

The following interaction parameters are found from Table G.2:

$$a_{1,1} = a_{1,2} = a_{2,1} = a_{2,2} = a_{33,33} = 0 \text{ K}$$

 $a_{1,33} = a_{2,33} = 255.7 \text{ K}$
 $a_{33,1} = a_{33,2} = 65.33 \text{ K}$

Substitution of these values into Eq. (G.21) with T = 308.15 K gives

$$\tau_{1,1} = \tau_{1,2} = \tau_{2,1} = \tau_{2,2} = \tau_{33,33} = 1$$

$$\tau_{1,33} = \tau_{2,33} = 0.4361$$

$$\tau_{33,1} = \tau_{33,2} = 0.8090$$

Application of Eq. (G.18) leads to the values of β_{ik} in the following table:

	eta_{ik}					
i	k = 1	k = 2	k = 33			
1	0.9436	0.9436	0.6024			
2 .	1.0000	1.0000	0.4360			

Substitution of these results into Eq. (G.19) yields:

$$\theta_1 = 0.4342$$
 $\theta_2 = 0.4700$

$$\theta_2 = 0.4700$$

$$\theta_{33} = 0.0958$$

and by Eq. (G.20),

$$s_1 = 0.9817$$

$$s_2 = 0.9817$$

$$s_1 = 0.9817$$
 $s_2 = 0.9817$ $s_{33} = 0.4901$

The activity coefficients may now be calculated. By Eq. (G.13),

$$\ln \gamma_1^C = -0.0213$$

and
$$\ln \gamma_2^C = -0.0076$$

and by Eq. (G.14),

$$\ln \gamma_1^R = 0.1463$$

and

$$\ln \gamma_2^R = 0.0537$$

Finally, Eq. (G.7) gives:

$$\gamma_1 = 1.133$$
 and $\gamma_2 = 1.047$

$$\gamma_2 = 1.047$$