Solution

Ch.E. 3173 FINAL May 9, 1988

I. 40 points

100000

Consider the liquid phase reaction:

a. 10 points

How would you write Ka in terms of liquid properties?

b. 20 points

Given that the solution of A and B obeys the Magules 3-suffix equation:

$$\ln \gamma_{A} = [\alpha + 2 (\beta - \alpha) x_{A}] x_{B}^{2}$$

$$\ln \gamma_{B} = [\beta + 2 (\alpha - \beta) x_{B}] x_{A}^{2}$$

where α and β are constants (independent of T, P, and x,'s), and given that equilibrium measurements give the following results:

X _A (equilibrium)
 0.500 0.622
100 120

Find α and β .

c. 10 points

Assuming ΔH_R^O is independent of T, find ΔH_R^O and the composition of the equilibrium liquid at 140°C.

II. 30 points

* 43

At 35°C, a liquid solution containing 40.5 mole % ethanol (A) and 59.5% methylcyclohexane (B) exerts a pressure of 152.4 mmHg. The vapor phase composition under these conditions is 54.7 mole % ethanol (A) and 45.3 mole % methycyclohexane (B). Vapor pressures of the pure components at 35°C are:

Ethanol (A) 103.1 mmHg Methylcyclohexane (B) 73.6 mmHg

Using the Van Laar equation to predict activity coefficients, find y_A and y_B in equilibrium with a liquid of composition $x_A = 0.6$, $x_B = 0.4$ at 35° C.

III. 30 points

Find the fugacity of pure n-hexane at $500\,^{\circ}\text{C}$ and $20\,^{\circ}\text{atm}$ of pressure.