Final Open Books and Notes

December 13, 2017

Open books and Notes			
	r Name:_	d turn back in with your solution. Attach fu	rther work as needed.
uns w	or questions un	a tain oack in with your solution. Tituen iu	Tallet Work as needed.
I.	30 points		
_	roposed to clea %K. The reacti	n the oxide layer off of tungsten wire by hea on would be:	ting it in hydrogen gas at 1 bar of pressure
	$WO_2(s) + 2 H_2(g) \rightarrow W(s) + 2 H_2O(g)$		
	You can use the following free energies for your calculations:		
		ΔG_{f}^{0} (J/mole) = -550,640 + 153.14 T ΔG_{f}^{0} (J/mole) = -246,449 + 54.81 T	(T in Kelvin) (T in Kelvin)
	based upon the elements in their standard states at 1 bar pressure. A) 10 points Can this process work? $\Box Yes \Box No$		
	B) 20 points		
	What is the maximum water vapor partial pressure that can exist in the hydrogen for it to work		

II. 10 points

Suppose we have a series of reactions that add to an overall reaction:

$$\begin{array}{cccc} A+B\rightarrow C+D & K_{a1} \\ C+D\rightarrow E+F & K_{a2} \\ E+F\rightarrow G+H & K_{a3} \\ G+H\rightarrow I+J & K_{a4} \\ +& \hline & A+B\rightarrow I+J & K_{a5} \end{array}$$

bar

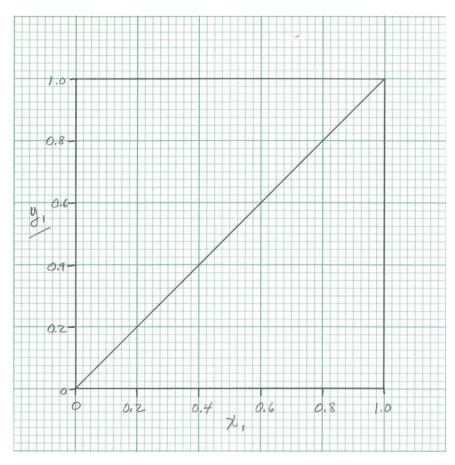
A) 5 points

How is K_{a5} related to the other K_a 's?

_____ (write your answer here).

B) 5 points

How many independent reactions are there? _____ Independent Reactions


II. 30 points

For the system n-hexane (1)/ methyl ethyl ketone (2) at 60° C, Van Laar constants are A = 1.1347, B = 1.2677 for the Van Laar equations in this form:

$$\ln(\gamma_1) = \frac{A}{\left(1 + \frac{Ax_1}{Bx_2}\right)^2} \qquad \ln(\gamma_2) = \frac{B}{\left(1 + \frac{Bx_2}{Ax_1}\right)^2}$$

A) 10 points

For this system, plot y_1 vs x_1 below. Provide enough data points so you can determine if there is an azeotrope.

B) 10 points

Estimate the composition of the azeotrope:

C) 10 points

What is the pressure of the azeotrope? _____ kPa

You may assume the vapor above the liquid is an ideal gas.

III. 30 points

Find the fugacity of the individual components in a chloroform (1)/dichloromethane (2) mixture at 400° C and 80 bar. The composition of the mixture is 60 mole% (1)/ 40 mole% (2). Use good practice in evaluating the fugacities, and note your assumptions. Poor assumptions will result in less than 100% credit.

 $f_1 = \underline{\hspace{1cm}} bar$

 $f_2 =$ ____bar